SupraMotion - At the forefront of automation technology


Superconductors and their potential for factory and process automation


The use of superconductors in the industrial automation sector is still in the development stage. Yet even today, completely new and efficient processes are conceivable with the technology. There is huge potential wherever contactless bearing or handling is called for – for example due to cleaning aspects, when there is spatial separation or when dealing with sensitive objects. Festo’s aim, together with evico and partners from science, is to advance the research of superconductors for industrial use and to continually develop the technology.

Festo has demonstrate three new possible applications at the Hannover Messe 2016: the contactless transfer of hovering support plates in the horizontal plane, mechanical gripping with spatial separation and the movement of an object in an enclosed tube.

SupraMotion 2016 once again demonstrates the fascinating properties of superconductors. If they are cooled down to a certain temperature, they can freeze the field of a permanent magnet at a defined distance, meaning that either they themselves or the magnet hover. The hover gap always remains stable in any spatial plane. This phenomenon enables objects to be held in position and moved without contact – with low power consumption and completely without control technology.



In the case of the SupraGripper, two grippers each with three fingers hover freely above two crescent-shaped plates. The hovering effect is achieved by the three cryostats, which are fitted underneath the plates and can be moved up and down with electrical cylinders. This means the grippers either hover above the plates or are placed onto them. In addition, the two plates can be rotated and accurately positioned with the help of two rotary drives, meaning that the two grippers can be transported from one cryostat to the next. Five CMMO-ST controllers control the cylinders as well as the rotary drives here. They feature the latest communication technology such as Ethernet or IO-link and receive their data from the Festo cloud, which enables them to be put into operation quickly.

At the start, two conventional grippers transfer one object each to the two hovering grippers. In order to grip it, electric coils on top of the cryostats give off an electrical impulse. This releases the saved connection to the magnetic gripper elements or restores it, making the individual finger elements turn up or down and the grippers open or close.

Possible applications and potential uses

The spatial separation of the magnetic gripper and superconductive drive opens up completely new solutions for harsh to extremely clean environments – for example in the pharmaceutical and chemical industry, laboratory automation and medical technology.

The electrical impulse used to open and close the  fingers enables contactless mechanical gripping through an enclosed surface and even in enclosed spaces. Gripping and transferring products together with the gripping system would also be conceivable beyond the limits of the handling system. In place of the two rotary tables, a conveyor belt could run underneath the application. This would allow – depending on requirements – control of whether the gripper or goods gripped should be transported at the same time.



Das Exponat zeigt, wie eine Bewegung in einer geschlossenen Röhre ohne jeglichen Durchgriff von außen ausgeführt werden kann. Mit einem etwas abgewandelten Aufbau könnten Antriebe mit einer Supraleiter-Magnetkopplung entlang der Längsachse des Rohrs verbaut werden, die ein Reinigungsgerät völlig kontaktfrei hindurchführen.

Alternativ könnte der Inhalt eines geschlossenen Behälters – etwa gefährliche Flüssigkeiten oder explosive Gase – sicher von außen in eine rotative Bewegung versetzt werden.

Kontaktfreie Reinigung im fluiden Umfeld

Zentrales Element der Anwendung ist eine Glasröhre, die einen Durchmesser von 250 Millimetern hat und mit einer Flüssigkeit gefüllt ist. An beiden Enden des Rohrs ist jeweils ein runder Kryostat mit Supraleitern angebracht. Innerhalb der Röhre befindet sich ein runder Magnetpuck, der auf beide Kryostate mit einem Schwebeabstand von etwa fünf Millimetern gepinnt ist und zu Beginn unter dem oben positionierten Kryostaten hängt.

Um die beiden Kryostate herum ist jeweils ein Magnetring angebracht. Mit einem Schrittmotor kann er in eine Drehbewegung versetzt werden, die sich auf den schwebenden Magneten in der Röhre überträgt. An der Unterseite der beiden Kryostate ist außerdem eine elektrische Spule installiert, die den Magneten mit einem Impuls abstößt. Dadurch taumelt dieser im Rohr mit einer Kreiselbewegung abwärts und wird am unteren Ende von dem Supraleiter im anderen Kryostat wieder kontrolliert eingefangen und genau zentriert.

Anschließend lässt sich die komplette Einheit über einen Festo-Drehmotor vom Typ DRRD vertikal um 180 Grad kippen, sodass der Vorgang wieder von vorne beginnt.



SupraJunction demonstrates the contactless transport of objects beyond enclosed surfaces and through locks. For this purpose, two magnetic support plates with small glass containers are transported on a circuit, whereby they are transferred from one superconductor element on a transport system to the next element on another system. For the transfer process, a total of four cryostats with superconductors are  fitted under the circuit. Two of them rest on the two horizontally attached ELGA-type electrical axes and can therefore be moved to the left and right. Two more cryostats are fixed in place beneath the two locks.

Automatic unit for fixing the hover gap

In order for the two support plates to keep their hovering height of five millimetres constant above all the cryostats, their magnetic fields are saved in advance. For this purpose there is a magnetic slide that is fixed in place on the outside of the exhibit, which acts as an automatic unit for freezing the hovering gaps. It corresponds to the shape and magnetisation of the two support plates so that these are  xed at the same gap above each cryostat.

The contactless transfer from the moving cryostats to those fixed in place always occurs at the entrance to the locks. During this process, the moving cryostat moves in front of the lock gate, which opens. An electromagnet, which is fastened to an external axis next to the lock, pulls the support plate from one cryostat to the other in the working direction of the magnetic rails. For the  first time, Festo thus achieves the automatic transfer from one system to another on the horizontal plane and enables overing transportation in long process chains and beyond system limits.

Simple cleaning and protected transport

During the whole process, the support plates hover above a flat pool of water. The support system and automation technology are therefore completely separate from one another, protecting the components against contamination and enabling very easy cleaning – ideal for an application in the packaging industry or pharmaceutical sector.